Name:Genqiang Liu
Title:Associate Professor
Office:School of mathematics and statistics, the first floor of the annex building.
Email: liugenqiangbnu@126.com, liugenqiang@henu.edu.cn,
Research Field:Representations of Lie algebras and associative algebras
Education:
2009.09-2012.06, Ph.D., Institute of mathematics, Chinese Academy of Sciences
2005.09-2008.06, Master of Science, Beijing Normal University
2001.09-2005.07, Bachelor of Science, Henan Normal University
Position:
2012.7-, Henan University,Associate professor
Selected publications:
[21]. Liu Genqiang, Zhao Kaiming*, The category of weight modules for sympelctic oscillator Lie algebas,Transformation Groups,(2021),1-20.
[20]. Liu Genqiang, Li, Yang*, Wang Keke,Irreducible weight modules over the Schrödinger Lie algebra in (n + 1) dimensional space-time,Journal of Algebra, 575,(2021), 1-13.
[19]. Liu Genqiang, Li Yang*,BGG category for the quantum Schrödinger algebra, Glasgow Mathematical Journal,63(2021),266 - 279.
[18]. Niu Mengnan, Liu Genqiang*,Irreducible jet modules for the vector field Lie algebra on S1×C,Communications in Algebra,49(2021),2091-2100.
[17]. Guo Xiangqian , Liu Genqiang , Lu Rencai, Zhao, Kaiming*,Simple Witt Modules that are Finitely Generated over the Cartan Subalgebra,Moscow Mathematical Journal,20(2020),43-65.
[16]. Brešar, Matej; Guo, Xiangqian; Liu, Genqiang; Lü, Rencai*; Zhao, Kaiming; Zero product determined Lie algebras. Eur. J. Math. 5 (2019), no. 2, 424–453.
[15]. Guo, Xiangqian; Liu, Genqiang*; Jet modules for the centerless Virasoro-like algebra. J. Algebra Appl. 18 (2019), no. 1, 1950002, 24 pp.
[14]. Liu, Genqiang; Lu, Rencai*; Zhao, Kaiming; Irreducible Witt modules from Weyl modules and gln-modules. J. Algebra 511 (2018), 164–181.
[13]. Liu, Genqiang*; Li, Yang; Wang, Yihan; Localization of highest weight modules of a class of extended affine Lie algebras. J. Geom. Phys. 129 (2018), 208–216.
[12]. Cai, Yan-an; Liu, Genqiang; Nilsson, Jonathan; Zhao, Kaiming*; Generalized Verma modules over sln+2 induced from U(hn)-free sln+1-modules. J. Algebra 502 (2018), 146–162.
[11]. Futorny, Vyacheslav; Liu, Genqiang; Lu, Rencai; Zhao, Kaiming*; New families of irreducible weight modules over sl3. J. Algebra 501 (2018), 458–472.
[10]. Liu, Genqiang*; Zhao, Yueqiang; Generalized polynomial modules over the Virasoro algebra. Proc. Amer. Math. Soc. 144 (2016), no. 12, 5103–5112.
[9]. Liu, Genqiang*; Zhao, Yueqiang; Irreducible A(1)1-modules from modules over two-dimensional non-abelian Lie algebra. Front. Math. China 11 (2016), no. 2, 353–363.
[8]. Liu, Genqiang; Zhao, Kaiming*; Classification of irreducible bounded weight modules over the derivation Lie algebras of quantum tori. Linear Algebra Appl. 495 (2016), 11–23.
[7]. Liu, Genqiang*; Zhao, Kaiming; New irreducible weight modules over Witt algebras with infinite-dimensional weight spaces. Bull. Lond. Math. Soc. 47 (2015), no. 5, 789–795.
[6]. Liu, Genqiang; Lu, Rencai*; Zhao, Kaiming; A class of simple weight Virasoro modules. J. Algebra 424 (2015), 506–521.
[5]. Liu, Genqiang; Guo, Xiangqian*; Harish-Chandra modules over generalized Heisenberg-Virasoro algebras. Israel J. Math. 204 (2014), no. 1, 447–468.
[4]. Guo, Xiangqian; Liu, Genqiang*; Zhao, Kaiming Irreducible Harish-Chandra modules over extended Witt algebras. Ark. Mat. 52 (2014), no. 1, 99–112.
[3]. Liu, Genqiang*; Zhao, Kaiming; Irreducible Harish Chandra modules over the derivation algebras of rational quantum tori. Glasg. Math. J. 55 (2013), no. 3, 677–693.
[2]. Liu, Genqiang; Zhang, Yingbo*; Canonical forms of indecomposable modules over K[x,y]/(xp,yq,xy). Algebra Colloq. 18 (2011), no. 3, 373–384.
[1]. Liu, Genqiang*; Zhao, Kaiming; Irreducible modules over the derivation algebras of rational quantum tori. J. Algebra 340 (2011), 28–34.
Research Funding:
1. Representations of Weyl type algebras and their applications in the representations of Lie algebras and quantum groups,National Natural Science Foundation of China(11771122),2018-01 ----2021-12.
2. Representations of Infinite dimensional Lie algebras and representations of quantum groups,
Excellent youth project of Henan Provincial Nature Fund, 2020-10----2023-10.
Teaching:
Linear algebra, Lie groups, Lie algebras and its representations, basic algebra, Representations of groups.